Carbon Nanotubes & Devices

Carbon Nanotubes & Devices

107. Structural configurations and Raman spectra of carbon nanoscrolls
T Uhm, J Na, J-U Lee, H Cheong, SW Lee, EEB Campbell, SH Jhang
Nanotechnology 31 315707 (2020) DOI:10.1088/1361-6528/ab884f

106. Role of remote interfacial phonons in the resistivity of graphene 
YG You, JH Ahn, BH Park, Y Kwon, EEB Campbell, SH Jhang
Applied Physics Letters 115 043104 (2019) DOI:10.1063/1.5097043

105. Accurate and Precise Determination of Mechanical Properties of Silicon Nitride Beam Nanoelectromechanical Devices
H. Kim, D.H. Shin, K. McAllister, M. Seo, S. Lee, I.S. Kang, B.H. Park, E.E.B. Campbell, S.W. Lee
ACS Appl. Mater. Interfaces, 9, 7282–7287 (2017), DOI: 10.1021/acsami.6b16278

104. Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen
T. Yeshua, C. Lehmann, K. Strain, S. Azoubel S. Magdassi, E.E.B. Campbell, S. Reich, A. Lewis
Nano Lett. 16, 1517-1522 (2016) DOI:0.1021/acs.nanolett.5b03424 

103. In Situ Studies of Growth of Carbon Nanotubes on a Local Metal Microheater
O.A. Nerushev, J. Ek-Weis, E.E.B.Campbell 
Nanotechnology, 26, 505601 (2015) DOI:10.1088/0957-4484/26/50/505601

102. Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics
Hoyeol Yun, Sangwook Kim, Hakseong Kim, Junghyun Lee, Kirstie McAllister, Junhyung Kim, Sengmoon Pyo, Jun Sung Kim, Eleanor E. B. Campbell, Wi Hyoung Lee, Sang Wook Lee
Sci. Reports, 5, 10220 (2015) DOI: 10.1038/srep10220

101. Random telegraph noise in metallic single-walled carbon nanotubes
H.J.Chung, Uhm, S.W. Kim, You, S.W. Lee, S.H.Jhang, E.E.B. Campbell, Y.W. Park
Appl. Phys. Lett. 104 (2014) 193102  DOI: 10.1007/s10934-017-0387-0

100. Nanoelectromechanical devices with carbon nanotubes
S.W. Lee, E.E.B. Campbell
Current Appl. Phys. 13 (2013) 1844-1859  DOI: 10.1016/j.cap.2013.02.023

99. Direct top-down fabrication of nanoscale electrodes for organic semiconductors using fluoropolymer resists
J. Park, J. Hom H. Yun, M. Park, J.H. Lee, M. Seo, E.E.B. Campbell, C. Lee, S. Pyo, S.W. Lee
Appl. Phys. A 111 (2013) 1051-1056  DOI: 10.1007/s00339-012-7411-7

98. Electromechanically tunable carbon nanofiber photonic crystal
R. Rehammar, F.A. Ghavanini, R. Magnusson, J.M. Kinaret, P. Enoksson, H. Arwin, E.E.B. Campbell
Nano Lett. 13 (2013) 347-401  DOI: 10.1021/nl3035527

97. Determination of the Bending rigidity of Graphene via Electrostatic Actuation of Buckled Membranes
N. Lindahl, D. Midtvedt, J. Svensson, O.A. Nerushev, N. Lindvall, A. Isacsson, E.E.B. Campbell
Nano Lett. 12 (2012) 3526-3531  DOI: 10.1021/nl301080v

96. Diffraction from carbon nanofiber arrays
R. Rehammar, Y. Francescato,  A.I. Fernandez-Dominguez, S.A. Maier, J.M. Kinaret, E.E.B. Campbell
Optics Lett. 37 (2012) 100-102  DOI: 10.1364/OL.37.000100

95. Optical in situ characterisation of carbon nanotube growth
J. Ek-Weis, O.A. Nerushev, E.E.B. Campbell
Int. J. Nanotechnology 9 (2012) 3-17  DOI: 10.1504/IJNT.2012.044826

94. Direct Deposition of Aligned Single Walled Carbon Nanotubes by Fountain Pen Nanolithography
K.M. Strain, T. Yeshua, A.V. Gromov, O. Nerushev, A. Lewis, E.E.B. Campbell
Materials Express 4 (2011) 279-284  DOI: 10.1166/mex.2011.1044

93. Schottky barriers in carbon nanotube-metal contacts
J. Svensson, E.E.B. Campbell
J. Appl. Phys. 110 (2011) 111101  DOI: 10.1063/1.3664139

92. Carbon nanotube Field Effect Transistors with Suspended Graphene Gates
J. Svensson, N. Lindahl, H. Yun, M. Seo, D. Midtvedt, Y. Tarakanov, N. Lindvall, O. Nerushev, J. Kiinaret, S.W. Lee, E.E.B. Campbell
Nano Lett. 11 (2011) 3569-3575  DOI: 10.1021/nl201280q

91. A fast and low-power microelectromechanical system-based non-volatile memory device
S.W. Lee, S.J. Park, E.E.B. Campbell, Y.W. Park
Nature Comm. 2 (2011) 220  DOI: 10.1038/ncomms1227

90. In-situ Bullk Electrophoretic Separation of Single-Walled carbonnanotubes Grown by Gas-Phase Catalytic Hydrocarbon Decomposition
D.V. Smovzh, V.A. Maltsev, S. Dittmer, V.I. Zaikovsky, E.E.B. Campbell. O.A. Nerushev
Chem. Vap. Deposition 16 (2010) 225-230  DOI: 10.1002/cvde.201006842

89. Carbon-based nanoelectromechanical devices
S. Bengtsson, P. Enoksson, F. Ghavanini, K. Engstrom, P. Lundgren, E.E.B. Campbell, J. Ek-Weis, N. Olofsson, A. Eriksson, J. Kinaret, Y. Tarakanov
Int. J. of High Speed Electronics and Systems 20 (2011) 195-204  

88. Optical properties of carbon nanofiber photonic crystals
R. Rehammar, R. Magnusson, A. I. Fernandez-Dominguez, H. Arwin, J.M. Kinaret, S. A. Maier, E. E. B. Campbell
Nanotechnology 21 (2010) 465203  DOI: 10.1088/0957-4484/21/46/465203

87. Growth of Aligned MWNT Arrays Using a Micrometer Scale Local-Heater at Low Ambient Temperature
S. Dittmer, J. Ek-Weis, O.A. Nerushev, E.E.B. Campbell
J. Nanotechn & Nanoscience 10 (2010) 4015-4022  DOI: 10.1166/jnn.2010.1994

86. Dispersing Individual Single-Wall Carbon Nanotubes in Aqueous Surfactant Solutions Below the CMC
P. Angelikopoulos, A. Gromov, A. Leen, O. Nerushev, H. Bock, E.E.B. Campbell
J. Phys. Chem. C 114 (2010) 2-9  DOI: 10.1021/jp905925r

85. Carbon-nanotube-based Nanoelectromechanical Switches
S.W. Lee, A. Eriksson, A.A. Sourab, E.E.B. Campbell
J. Korean Phys. Soc. 55 (2009) 957-961 DOI: 10.3938/jkps.55.957

84. Through silicon vias filled with planarized carbon nanotube bundles
T. Wang, K. Jeppson, N. Olofsson, E.E.B.Campbell, J. Liu
Nanotechnology 20 (2009) 485203  DOI: 10.1088/0957-4484/20/48/485203

83. Determination of the effective Young’s modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor
N. Olofsson, J. Ek-Weis, A. Eriksson, T. Idda, E.E.B. Campbell
Nanotechnology 20 (2009) 385710  DOI: 10.1088/0957-4484/20/38/385710

82. Characterisation of Varactors based on Carbon Nanotube Arrays
J. Ek-Weis, A. Eriksson, T. Idda, N. Olofsson, E.E.B. Campbell
Proc. Inst. Mech. Eng Part N: J. Nanoeng. & Nanosystems 222 (2009) 111-115. 

81. The dependence of the Schottky barrier height on carbon nanotube diameter for Pd-carbon nanotube contacts
J. Svensson, A.A. Sourab, Yu. Tarakanov, D.S. Lee, S.J. Park, S.J. Baek, Y.W. Park, E.E.B. Campbell
Nanotechnology 20 (2009) 175204  DOI: 10.1088/0957-4484/20/17/175204

80. Effect of catalyst pattern geometry on the growth of vertically aligned carbon nanotube arrays
G.H. Jeong, N. Olofsson, L.K.L. Falk, E.E.B. Campbell
Carbon 47 (2009) 696  DOI: 10.1016/j.carbon.2008.11.003

79. Local heating method for growth of aligned carbon nanotubes at low ambient temperature
S. Dittmer, S. Mudgal, O.A. Nerushev, E.E.B. Campbell
Low Temp.Phys. 34 (2008) 834-837  DOI: 10.1063/1.2981398

78. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay
J. Svensson, Yu. Tarakanov, D.S. Lee, J. Kinaret, Y.W. Park, E.E.B. Campbell
Nanotechnology 19 (2008) 325201.  DOI: 10.1088/0957-4484/19/32/325201

77. In situ Raman studies of single-walled carbon nanotubes grown by local catalyst heating
S. Dittmer, N. Olofsson, J. Ek-Weis, O.A. Nerushev, A.V. Gromov, E.E.B. Campbell
Chem. Phys. Lett. 457 (2008) 206-210  DOI: 10.1016/j.cplett.2008.04.008

76. Direct Transmission Detection of Tunable Mechanical Resonance in an Individual Carbon Nanofibre Relay
A. Eriksson, S.-W. Lee, A.A. Sourab, A. Isacsson, R. Kaunisto, J. M. Kinaret, E.E.B. Campbell
Nano Lett. 8 (2008) 1224-1228  DOI: 10.1021/nl080345w

75. Dielectrophoresis-Induced Separation of Metallic and Semiconducting SWNT in a Continuous Flow Microfluidic System
M. Mattsson, A. Gromov, S. Dittmer, E. Eriksson, O.A. Nerushev, E.E.B. Campbell
J. Nanotechn & Nanoscience, 7 (2007) 3431-3435  DOI: 10.1166/jnn.2007.830

74. In situ Raman measurements of suspended individual single-walled carbon nanotubes under strain
S.W. Lee, G.-H. Jeong, E.E.B. Campbell
Nano Lett. 7 (2007) 2590-2595  DOI: 10.1021/nl070877x

73. Nucleation and aligned growth of multi-wall carbon nanotube films during thermal CVD
Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell
Carbon 45 (2007) 2065-2071  DOI: 10.1016/j.carbon.2007.05.020

72. Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive
T. Wang, B. Carlberg, M. Jönsson, G.-H. Jeong, E.E.B. Campbell, J. Liu
Appl. Phys. Lett. 91 (2007) 093123  DOI: 10.1063/1.2776849

71. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films
M. Jönsson, O.A. Nerushev, E.E.B. Campbell
Nanotechnol. 18 (2007) 305702  DOI: 10.1088/0957-4484/18/30/305702

70. DC plasma enhanced chemical vapour deposition growth of carbon nanotubes and nanofibres: in situ spectroscopy and plasma current dependence 
M. Jönsson, O.A. Nerushev, E.E.B. Campbell
Appl. Phys. A 88 (2007) 261-267  DOI: 10.1007/s00339-007-3994-9

69. Carbon nanotube bolometers 
M. Taraasov, J. Svensson, L. Kuzmin, E.E.B. Campbell
Appl. Phys. Lett. 90 (2007) 163503  DOI: 10.1063/1.2722666

68. Development and characterization of microcoolers using carbon nanotubes 
T. Wang, M. Jönsson, E. Nyström, Z.M. Mo, E.E.B. Campbell, J. Liu
IEEE Proceedings of ESTC 2006 1st Electronics Systemintegration Technology Conference 1-2 (2006) 881-885

67. Development of carbon nanotube bumps for ultrafine pitch flip chip interconnection 
T. Wang, M. Jönsson, E.E.B. Campbell, J. Liu
IEEE Proceedings of ESTC 2006 1st Electronics Systemintegration Technology Conference 1-2 (2006) 892-895

66. Field emission induced deformations in SiO2 during CVD growth of carbon nanotubes 
J. Svensson, N.M. Bulgakova, O.A. Nerushev, E.E.B. Campbell
Physica Status Solidi B 243 (2006) 3524-3527  DOI: 10.1002/pssb.200669114

65. Random telegraph noise in carbon nanotubes and peapods 
S.H. Jhang, S.W. Lee, D.S. Lee, H.Y. Yu, U. Dettlaff, E.E.B. Campbell, S. Roth, Y.W. Park
Current Appl. Phys. 6 (2006) 987-991  DOI: 10.1016/j.cap.2005.07.003

64. Electric field enhancement factors around a metallic end-capped cylinder 
S. Podenok. M. Sveningsson, K. Hansen, E.E.B. Campbell
Nano, 1 (2006) 87-93  DOI: 10.1142/S1793292006000112

63. Quantum dot manipulation in a single-walled carbon nanotube using a carbon nanotube gate
D.S. Lee, J. Svensson, S.J.Park, S.D. Park, M. Jonson, E.E.B. Campbell, Y.W. Park 
Appl. Phys. Lett. 89 (2006) 233107  DOI: 10.1063/1.2402119

62. Fabrication and mechanical properties of suspended one-dimensional polymer nanostructures: polypyrrole nanotube and helical polyacetylene nanofibre 
S.W. Lee, B. Kim, D.S. Lee, H.J. Lee, J.G. Park, S.J. Ahn, E.E.B. Campbell, Y.W. Park
Nanotechn. 17 (2006) 992-996  DOI: 10.1088/0957-4484/17/4/025

61. Electrical transport measurement of molecular device fabricated by electrochemical deposition of platinum electrode 
B. Kim, S.J. Ahn, J.G. Park, S.H. Lee, Y.W. Park, E.E.B. Campbell
Thin Solid Films 499 (2006) 196-200  DOI: 10.1016/j.tsf.2005.06.072

60. Low ambient temperature growth of carbon nanotubes 
S. Dittmer, O.A. Nerushev, E.E.B. Campbell
Appl. Phys. A, 84 (2006) 243-246   DOI: 10.1007/s00339-006-3614-0   

59. Dielectrophoretic behavior of ionic surfactant-solubilized carbon nanotubes 
Z.-B. Zhang, S.-L. Zhang, E.E.B. Campbell
Chem. Phys. Lett., 421 (2006) 11-15 DOI: 10.1016/j.cplett.2006.01.053

58. All-round contact for carbon nanotube field effect transistors made by ac dielectrophoresis
Z.-B. Zhang, S.-L. Zhang, E.E.B. Campbell
J. Vac. Sci. Technol. B24 (2006) 131-135. DOI: 10.1116/1.2150226

57. Possible role of charge transport in carbon nanotube growth
N.M. Bulgakova, A.V. Bulgakov, J. Svensson, E.E.B. Campbell
Appl. Phys. A  85 (2006) 109-116  DOI: 10.1007/s00339-006-3684-z

56. Graphitic encapsulation of catalyst particles in carbon nanotube production
F. Ding, A. Rosen, E.E.B. Campbell, L.K.L. Falk, K. Bolton
J. Phys. Chem. B, 110 (2006) 7666-7670  DOI: 10.1021/jp055485y

55. Marangoni effect in SiO2 during field-directed CVD growth of carbon nanotubes
J. Svensson, N.M. Bulgakova, O.A. Nerushev, E.E.B. Campbell
Phys. Rev. B, 73 (2006) 205413  DOI: 10.1103/PhysRevB.73.205413

54. Fabrication of crossed junctions of semiconducting and metallic carbon nanotubes: a CNT-gated CNT-FET
D.S. Lee, J. Svensson, S.W. Lee, Y.W. Park, E.E.B. Campbell
J. Nanoscience & Nanotech., 6 (2006) 1325-1330  DOI: 10.1166/jnn.2006.321

53. Fabrication of individual, vertically aligned carbon nanofibres on metal substrates from prefabricated catalyst dots
M.S. Kabir, R.E. Morjan, O.A. Nerushev, P. Lundgren, S. Bengtsson, P. Enoksson, E.E.B. Campbell
Nanotechnology, 17 (2006) 790  DOI: 10.1088/0957-4484/17/3/029

52. Integrated nanotube microcooler for microelectronics applications
Z.M. Mo, R. Morjan, J. Andersson, E.E.B. Campbell, J. Liu
IEEE Proceedings of the 55th Electronic Components and Technology Conference, 1-2 (2005) 51-54

51. Theoretical and experimental investigations of three-terminal carbon nanotube nanorelays
S. Axelsson, E.E.B. Campbell, L.M. Jonsson, J. Kinaret, S.W. Lee, Y.W. Park, M. Sveningsson
New J. Phys., 7 (2005) 245  DOI: 10.1088/1367-2630/7/1/245

50. Alternating current dielectrophoresis of carbon nanotubes
Z.-B. Zhang, X.-J. Liu, E.E.B. Campbell, S.-L. Zhang
J. Appl. Phys., 98 (2005) 056103  DOI: 10.1063/1.2037866

49. Reversible surface functionalisation of carbon nanotubes for fabrication of field effect transistors
Z.-B. Zhang, J. Cordenas, E.E.B. Campbell, S.-L. Zhang
Appl. Phys. Lett. 87 (2005) 043110  DOI: 10.1063/1.2005393

48. On the phonon mechanism of energy transfer from conduction electrons to lattice I single-wall metallic carbon nanotubes at low temperatures
N.A. Poklonski, E.F. Kislyaov, L. Kuzmin, M. Tarasov, E.E.B. Campbell
in “Physics, Chemistry and Application of Nanostructures” ed. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin (World Scientific, 2005) p. 235-239.

47. Random telegraph noise in carbon nanotube peapod transistors
S.H. Jhang,  S.W. Lee, D.S. Lee, Y.W: Park, G.H. Jeong, T. Hirata, R. Hatakeyama, U. Dettlaff, S. Roth, M.S. Kabir, E.E.B. Campbell
Fullerenes, Nanotubes and Carbon Nanostructures 13 (2005)195-198   DOI:10.1081/FST-200039257

46. Cross sectional TEM investigation of Ni-catalysed carbon nanotube films grown by plasma enhanced CVD
Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell
J. Microscopy, 219 (2005) 69-75  DOI: 10.1111/j.1365-2818.2005.01494.x

45. Quantifying temperature enhanced electron field emission from individual carbon nanotubes
M. Sveningsson, K. Hansen, K. Svensson, E. Olsson, E.E.B. Campbell
Phys. Rev. B, 72 (2005) 085429    DOI: 10.1103/PhysRevB.72.085429   

44. Field emission from multiwalled carbon nanotubes – its application in NEMS
M. Sveningsson, S.W: Lee, Y.W. Park, E.E.B. Campbell
AIP Conference Proceedings (2005) 786 (Electronic Properties of Novel Nanostructures) 620-623  

43. Covalent Amino functionalisation of single walled carbon nanotubes
A. Gromov, S. Dittmer, J. Svensson, O.A. Nerushev, S.A. Perez-Garcia, L. Licea-Jimenez, R. Rychwalski, E.E.B. Campbell
J. Mat. Chem., 15 (2005) 3334-3339  DOI: 10.1039/b504282h

42. Extraction of semiconducting carbon nanotubes by repeated dielectrophoretic filtering
D.S. Lee, D.W. Kim, H.S. Kim, S.W. Lee, S.H. Jhang, Y.W. Park, E.E.B. Campbell
Appl. Phys. A. 80 (2005) 5-8  DOI: 10.1007/s00339-004-2992-4

41. Plasma-enhanced chemical vapour deposition growth of carbon nanotubes on different metal underlayers
M.S. Kabir, R.E. Morjan, O.A. Nerushev, P. Lundgren, S. Bengtsson, P. Enoksson, E.E.B. Campbell
Nanotechnology 16 (2005) 458  DOI: 10.1088/0957-4484/16/4/022

40. Kolnanorör
E.E.B. Campbell
Forskning och Framsteg, okt. (2004)

30. Temperature-dependent molecular conduction measured by the electrochemical depostion of a platinum electrode in a lateral configuration
B. Kim, SJ. Ahn, J.G. Park, S.H. Lee, Y.W. Park, E.E.B. Campbell
Appl. Phys. Lett. 85 (2004) 4756  DOI: 10.1063/1.1821657

29. Current enhancement with alternating gate voltage in the Coulomb Blockade regime of a single wall carbon nanotube
H.Y. Yu, D.S. Lee, S.S. Kim, B. Kim, S.W. Lee, J.G. Park, S.H. Lee, G.C. McIntosh, Y.W. Park, M.S. Kabir, E.E.B. Campbell, S. Roth
Appl. Phys. A 79 (2004) 1613-1615  DOI: 10.1007/s00339-004-2906-5

28. Highly efficient electron field emission from decorated multiwalled carbon nanotube films
M. Sveningsson, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell, D. Malsch, J.A. Schaefer
Appl. Phys. Lett. 85 (2004) 4487-4489  DOI: 10.1063/1.1819521

27. A three-terminal carbon nanorelay
S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.E.B. Campbell
Nano Lett. 4 (2004) 2027-2030  DOI: 10.1021/nl049053v

26. Electric field aligned growth of single-walled nanotubes
S. Dittmer, J. Svensson, E.E.B. Campbell
Current Appl. Phys.,4 (2004) 595-594  DOI: 10.1016/j.cap.2004.01.026

25. Selective growth of individual multiwalled carbon nanotubes
R.E. Morjan, M.S. Kabir, S.W. Lee, O.A. Nerushev, P. Lundgren, S. Bengtsson, Y.W. Park, E.E.B. Campbell
Current Appl. Phys, 4 (2004) 591-594  DOI: 10.1016/j.cap.2004.01.025

24. High growth rates and wall decoration of carbon nanotubes grown by plasma-enhanced chemical vapour deposition
R.E. Morjan, V. Maltsev, O. Nerushev, Y. Yao, L.K.L. Falk, E.E.B. Campbell
Chem. Phys. Lett., 383/4 (2004) 385-390  DOI: 10.1016/j.cplett.2003.11.063

23. Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: the nanotube film
Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell
J. Mat. Sci.: Materials for Electronics, 15 (2004) 583-594  DOI: 10.1023/B:JMSE.0000036037.84271.f0

22. Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part I: the silicon substrate / nanotube film interface
Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell
J. Mat. Sci.: Materials for Electronics, 15 (2004) 533-543  DOI: 10.1023/B:JMSE.0000032588.60083.56

21. Electron field emission from multi-walled carbon nanotubes
Sveningsson, R.E. Morjan, O. Nerushev, E.E.B. Campbell
Carbon, 42 (2004) 1165-1168  DOI: 10.1016/j.carbon.2003.12.057

20. CF, CB and SWNT Polymer Composites
L. Licea-Jimenez, R.W. Rychwalski, E.E.B. Campbell, A. Gromov, D.H. McQueen, B. Voigt
Proc. of Nat. Conf. On Polymer Characterisation, Krakow Poland), Sep. 2003 

19. Electron field emission from multiwalled carbon nanotubes
M. Sveningsson, R.Morjan, O. Nerushev, K. Svensson, E. Olsson, E.E.B. Campbell
in ”Fullerenes and Nanotubes: The Building Blocks of Next Generation nanodevices” ed. D.M. Guldi, P.V. Kamat, F. D’Souza (Electrochemical Soc., 2003) p. 340-345

18. Vertically aligned carbon nanotubes synthesised by direct current plasma chemical vapour deposition
R.E. Morjan, V. Maltsev, A. Gromov, O.A. Nerushev, E.E.B. Campbell
in ”Fullerenes and Nanotubes: The Building Blocks of Next Generation nanodevices” ed. D.M. Guldi, P.V. Kamat, F. D’Souza (Electrochemical Soc., 2003) p. 371-374

17. Production of suspended individual single-walled carbon nanotubes using the ac electrophoresis technique
S.W. Lee, D.S. Lee, H.Y. Yu, E.E.B. Campbell, Y.W. Park
Appl. Phys. A., 78 (2003) 283-286  DOI: 10.1007/s00339-003-2363-6

16. Optical recombination of ZnO wires grown on sapphire and silicon substrates
Q.X. Zhao, M. Willander, R.E. Morjan, Q.H. Hu, E.E.B. Campbell
Appl. Phys. Lett., 83 (2003) 165-167  DOI: 10.1063/1.1591069

15. Synchrotron Radiation Study of the Electronic Structure of MWNT
J. Schiessling, L. Kjeldgaard, J. Nordgren, P.A. Bruhwiler, F. Rohmund, L.K.L. Falk, E.E.B. Campbell
J. Phys. Condensed Matter 15 (2003) 6563-6579  DOI: 10.1088/0953-8984/15/38/022

14. Growth of carbon nanotubes from C60,
R.-E. Morjan, O.A. Nerushev, M. Sveningsson, L.K.L. Falk, E.E.B. Campbell, F. Rohmund
Appl. Phys. A., 78 (2003) 253-262  DOI: 10.1007/s00339-003-2297-z

13. Particle size dependence and model for iron-catalyzed growth of nanotubes by thermal chemical vapour deposition
O.A. Nerushev, R.-E. Morjan, E.E.B. Campbell, F. Rohmund
J. Appl. Phys. 93 (2003) 4185-4190  DOI: 10.1063/1.1559433

12. Field Emission from Multi-Walled Carbon Nanotubes
M. Sveningsson, M. Jönsson, O. Nerushev, F. Rohmund, E.E.B.Campbell
Proc. Of XVIth Int. Winterschool on Structural and Electronic  Properties of Molecular Nanostructures, ed. Kuzmany, Fink, Mehring, Roth (2002) p. 548-551 

11. Parametric study of nanotube growth from C2H2 and C60 on supported iron catalyst particles
R.-E Morjan, O.A. Nerushev, M.Sveningsson, L.K.L.Falk, F.Rohmund, E.E.B Campbell
Proc. Of XVIth Int. Winterschool on Structural and Electronic  Properties of Molecular Nanostructures, ed. Kuzmany, Fink, Mehring, Roth (2002) p. 186-189

10. Experimental and theoretical study of third-order harmonic generation in carbon nanotubes
C. Stanciu, R. Ehlich, G. Ya. Slepyan, A. A. Khrutchinski, S. A. Maksimenko, F.Rotermund, V. Petrov, O. Steinkellner, F. Rohmund, E.E.B. Campbell, J. Herrmann, I. V. Hertel
Appl. Phys. Lett., 81 (2002) 4064-4066  DOI: 10.1063/1.1521508

9. Black body radiation from resistively heated multi-walled carbon nanotubes during field emission,
M. Sveningsson, M. Jönsson, O.A. Nerushev, F. Rohmund, E.E.B. Campbell
Appl. Phys. Lett., 81 (2002) 1095  DOI: 10.1063/1.1498493               

8. The temperature dependence of Fe-catalyzed growth of carbon nanotubes on silicon substrates
O.A. Nerushev, R.-E. Morjan, D.I. Ostrovskii, M. Sveningsson, M. Jönsson, F. Rohmund, E.E.B. Campbell
Physica B, 323 (2002) 51-59  DOI: 10.1016/S0921-4526(02)00965-1

7. Production and derivatisation of carbon nanotubes
F. Rohmund, A. Gromov, R.E. Morjan, O. Nerushev, Y. Sato, M. Sveningsson, E.E.B. Campbell
Proc. Of XVth Int. Winterschool on Structural and Electronic  Properties of Molecular Nanostructures, ed. Kuzmany, Fink, Mehring, Roth (2001)

6. Raman spectroscopy and field emission properties of CVD-grown carbon nanotube films
M. Sveningsson, R.-E. Morjan, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund
Appl. Phys. A., 73 (2001) 409-418   DOI: 10.1007/s003390100923            

5. Iron particle catalysed CVD growth of carbon nanotubes
F. Rohmund, O. A. Nerushev, M. Sveningsson, E.E.B. Campbell
in "The Physics and Chemistry of Clusters",Proceedings of Nobel Symposium 117,  edited by E.E.B. Campbell, M Larsson, (World Scientific,2001) 303

4. Iron catalysed production of carbon nanotubes
F. Rohmund, L.K.L. Falk, E.E.B. Campbell
Proc. of the Int. Winterschool on Electronic Properties of Novel Materials, Molecular Nanostructures 2000, ed. H. Kuzmany, J. Fink, S. Roth

3. A simple method for the production of large arrays of aligned carbon nanotubes
F. Rohmund, L.K.L. Falk, E.E.B. Campbell
Chem. Phys. Lett., 328 (2000) 369-373  DOI: 10.1016/S0009-2614(00)00996-9

2. Highly efficient high-order harmonic generation by metallic carbon nanotubes
G. Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, J. Herrmann, E.E.B. Campbell, I.V. Hertel
Phys. Rev. A 60, (1999) R777-780  DOI: 10.1103/PhysRevA.60.R777

1. Growth of carbon nanotubes by fullerene decomposition in the presence of transition metals
L.P. Biro, R. Ehlich, R. Tellgmann, A. Gromov, N. Krawez, M. Tschaplyguine, M.-M. Pohl, E. Zsoldos, Z. Vertessy, Zs. Horvath, E.E.B. Campbell
Chem. Phys. Lett., 306, (1999) 155-162  DOI: 10.1016/S0009-2614(99)00433-9

Powered by Drupal